32 research outputs found

    Electrochemical Formation of Second Generation TiO2 Nanotubes on Ti13Nb13Zr Alloy for Biomedical Applications

    Get PDF
    The aim of this study was to obtain the second generation TiO2 nanotubes on the Ti13Nb13Zr alloy. Anodic oxidation of the alloy under study was carried out in 1 M (NH4)2SO4 electrolyte under voltage–time conditions of 20 V for 120 min. The morphological parameters of the obtained nanotubes of second generation such as the length (L), internal (Di) and outer (Do) diameter of nanotube were determined. It was found that the anodic oxidation of the Ti13Nb13Zr alloy conducted under proposed conditions allowed to obtain the single-walled nanotubes of the following geometrical parameters: the internal diameter 61 nm, outer diameter 103 nm, and the length 3.9 μm. The total surface area of the single-walled nanotubes was equal to 4.1 μm2, and the specific surface area per cm2 (As) was estimated to be 15.6 cm2/cm2. Formation mechanism, structure and optimal morphological parameters of the obtained single-walled nanotubes on the Ti13Nb13Zr alloy have been discussed in detail

    Preparation and characterization of nitinol bone staples for cranio-maxillofacial surgery

    Get PDF
    The aim of this work was to form NiTi and TiNiCo body temperature activated and superelastic staples for clinical joining of mandible and face bone fractures. The alloys were obtained by VIM technique. Hot and cold processing was applied to obtain wires of required diameters. The martensitic transformation was studied by DSC, XRD, and TEM. The shape memory effects were measured by a bend and free recovery ASTM F2082-06 test. The superelasticity was recorded in the tension stress-strain and by the three-point bending cycles in an instrument equipped with a Hottinger force transducer and LVDT. Excellent superelastic behavior of TiNiCo wires was obtained after cold working and annealing at 400-500 C. The body temperature activated shape memory staples were applied for fixation of mandibular condyle fractures. In experiments on the skull models, fixation of the facial fractures by using shape memory and superelastic staples were compared. The superelastic staples were used in osteosynthesis of zygomatico-maxillo-orbital fractures

    Microstructure, phase transformations, and properties of hot-extruded Ni-rich NiTi shape memory alloy

    Get PDF
    Processing of NiTi shape memory alloys strongly influences their microstructure, phase transformations, mechanical, and shape memory properties. Hot forging, hot swaging, or hot rolling are efficient techniques for obtaining the desired shape, but during multiple operations the material must be heated and worked in the temperature range from 700 to 900 C. During these processes, intense oxidation takes place. In order to reduce it, the hot-pack working is applied. The hot extrusion is more effective for reduction of ingot, billet, and rod diameters than hot forging, hot swaging, or hot rolling. Also, during hot extrusion the material surface undergoes considerably less oxidation. In the present work, results of the characterization by differential scanning calorimetry, low-temperature x-ray powder diffraction, and three-point bending and free recovery ASTM F2082-06 tests of the samples after hot direct extrusion and heat treatment are presented. The obtained alloy after hot direct extrusion exhibits desired shape memory effect. The phase transformations during cooling and heating cycle occur with the presence of the R phase. The range of the characteristic temperatures for the obtained material gives possibility for further medical applications. After annealing at 400 and 500 C, the characteristic temperatures shift to higher values

    Structure and Properties of NiTi Shape Memory Alloy after Cold Rolling in Martensitic State

    Get PDF
    Due to unique features, like shape memory effects and superelasticity, NiTi alloys with nearly equiatomic composition are used in various branches of industry. Application of severe plastic deformation can drastically change properties of the materials. In the present paper the Ni50:4Ti49:6 alloy after cold rolling in the martensitic state and further annealed is studied. Phase transformations were studied using X-ray diffraction and differential scanning calorimetry measurements. Microstructure was examined using transmission electron microscopy and electron backscattering diffraction methods. Mechanical properties of obtained alloys has been studied using Vickers microhardness tests. Based on the performed measurements it can be seen that in studied alloys two steps B2 R R B190 phase transitions occurred. Performed plastic deformation influences course of phase transitions and phases composition. Due to the reduction of grain size microhardness of the studied material is increasing with increase of deformation degree

    NiTi Shape Memory Marformed Alloy Studied by Electron Beam Precession TEM Orientation Mapping Method.

    Get PDF
    Severe plastic deformation by cold-rolling in martensitic state was applied to Ni50:4Ti49:6 shape memory alloy. Received materials with 17, 20, 25, and 35% deformation were further annealed at 450 C for 15 min. After such treatment hardness of this alloy increased significantly reaching 365 HV0.5 for highest deformation degree. Calorimetric studies revealed two-stage and two-step character of martensitic transformation occurring in all specimens. Nanocrystalline structure with average grain size 53, 34, 28, and 24 nm was obtained. In material with 35% of deformation amorphous regions containing a nuclei of B2 parental phase with average size of 5 nm were observed. To determine the crystallographic orientation of observed nanograins and for better phase analysis, electron beam precession transmission electron microscopy orientation mapping was performer[…

    Effect of Nanoparticles Surface Charge on the Arabidopsis thaliana (L.) Roots Development and Their Movement into the Root Cells and Protoplasts

    Get PDF
    Increasing usage of gold nanoparticles (AuNPs) in different industrial areas inevitably leads to their release into the environment. Thus, living organisms, including plants, may be exposed to a direct contact with nanoparticles (NPs). Despite the growing amount of research on this topic, our knowledge about NPs uptake by plants and their influence on different developmental processes is still insufficient. The first physical barrier for NPs penetration to the plant body is a cell wall which protects cytoplasm from external factors and environmental stresses. The absence of a cell wall may facilitate the internalization of various particles including NPs. Our studies have shown that AuNPs, independently of their surface charge, did not cross the cell wall of Arabidopsis thaliana (L.) roots. However, the research carried out with using light and transmission electron microscope revealed that AuNPs with different surface charge caused diverse changes in the root’s histology and ultrastructure. Therefore, we verified whether this is only the wall which protects cells against particles penetration and for this purpose we used protoplasts culture. It has been shown that plasma membrane (PM) is not a barrier for positively charged (+) AuNPs and negatively charged () AuNPs, which passage to the cell

    Novel piezoelectric paper based on SbSI nanowires

    Get PDF
    A novel piezoelectric paper based on antimony sulfoiodide (SbSI) nanowires is reported. The composite of tough sonochemically produced SbSI nanowires (with lateral dimensions 10–100 nm and length up to several micrometers) with very flexible cellulose leads to applicable, elastic material suitable to use in fabrication of, for example, piezoelectric nanogenerators. For mechanical energy harvesting, cellulose/SbSI nanocomposite may be used. Due to its high values of electromechanical coefficient (k33 = 0.9) and piezoelectric coefficient (d33 = 1 9 10-9 C/N), SbSI is a very attractive material for such devices. The preliminary investigations of a simple cellulose/SbSI nanogenerator for shock pressure (p = 3 MPa) and sound excitation (f = 175 Hz, Lp = 90 dB) allowed to determine its open circuit voltage 2.5 V and 24 mV, respectively. For a load resistance equal to source impedance (ZS = 2.90(11) MX), maximum output power density (PL = 41.5 nW/cm3 for 0.05-mm-thick sheet of this composite) of the cellulose/SbSI nanogenerator was observed. Cellulose/SbSI piezoelectric paper may also be useful to construct gas nanosensors and actuators

    Fate of neutral-charged gold nanoparticles in the roots of the Hordeum vulgare L. cultivar Karat

    Get PDF
    Nanoparticles (NPs) have a significant impact on the environment and living organisms. The influence of NPs on plants is intensively studied and most of the data indicate that NPs can penetrate into plants. The studies presented here were performed on the roots of Hordeum vulgare L. seedlings using neutral-charge gold nanoparticles (AuNPs) of different sizes. In contrast to the majority of the published data, the results presented here showed that during the culture period, AuNPs: 1/did not enter the root regardless of their size and concentration, 2/that are applied directly into the cells of a root do not move into neighbouring cells. The results that were obtained indicate that in order to extend our knowledge about the mechanisms of the interactions between NPs and plants, further studies including, among others, on different species and a variety of growth conditions are needed

    Precession electron diffraction studies of SrxBa1-xNb2O6 and CaxBa1-xNb2O6 single crystals

    Get PDF
    Crystal structures of two single crystals SrxBa1xNb2O6 and CaxBa1xNb2O6 have been reinvestigated using automated electron diffraction tomography method with beam precession. 3D reciprocal space has been reconstructed based on recorded tilt series. For both samples the crystal structure was refined and the tetragonal symmetry with space group P4bm was confirmed. The three dimensional reciprocal space allowed to observe and to study satellite reflections in both materials

    Characterization of long-term corros ion performance of ti15mo alloyin saline solution

    Get PDF
    The Ti15Mo alloy has been studied towards long-term corrosion performance in saline solution at 37° C using electrochemical impedance spectroscopy. The physical and chemical characterization of the material were also investigated. The as-received Ti15Mo alloy exhibits a single β-phase structure. The thickness of single-layer structured oxide presented on its surface is ~4 nm. Impedance measurements revealed that the Ti15Mo alloy is characterized by spontaneous passivation in the solution containing chloride ions and formation of a double-layer structured oxide composed of a dense interlayer being the barrier layer against corrosion and porous outer layer. The thi ckness of this oxide layer, estimated based on the impedance data increases up to ~6 nm during 78 days of exposure. The obs erved fall in value of the log|Z|f = 0.01 Hz indicates a decrease in pitting corrosion resistance of Ti15Mo alloy in saline solution along with the immersion time. The detailed EIS study on the kinetics and mechanism of corrosion process and the capacitive behavior of the Ti15Mo electrode | passive layer | saline solution system was based on the concept of equivalent electrical circuit with respect to the physical meaning of the applied circuit elements. Potentiodynamic studies up to 9 V vs. SCE and SEM analysis show no presence of pitting corrosion what indicates that the Ti15Mo alloy is promising biomaterial to long-term medical applications
    corecore